the lectures pdfs are available at:

https://www.physics.umd.edu/rgroups/amo/orozco/results/2022/Results22.htm

Correlations in Optics and Quantum Optics; A series of lectures about correlations and coherence. November 2022

$$
\begin{gathered}
\begin{array}{c}
\text { Luis A. Orozco } \\
\text { www.jqi.umd.edu } \\
\text { BOS.QT }
\end{array}
\end{gathered}
$$

Lesson 10

Tentative list of topics to cover:

- From statistics and linear algebra to power spectral densities
- Historical perspectives and examples in many areas of physics
- Correlation functions in classical optics (field-field; intensityintensity; field-intensity) part iii
- Optical Cavity QED
- Correlation functions, quantum examples
- Correlations and conditional dynamics for control
- Correlations of the field and intensity
- From Cavity QED to waveguide QED.

From Cavity QED to Waveguide QED

Optical Nanofibers

Taper lenght 28 mm

Core diameter $5 \mu \mathrm{~m}$
Cladding diameter $125 \mu \mathrm{~m}$
Angle 2 mrad

Waist $480 \mathrm{~nm}, 7 \mathrm{~mm}$ long (not to scale)

The scale

100 ONF fit across a Human Hairses

Optical Nanofibers

$$
\lambda=780 \mathrm{~nm}
$$

Lowest order fiber modes Intensities and polarizations

Transversal component of the polarization
E continuous line

$T M_{01}$

HE_{21}

Introduction to optical nanofibers, as waveguide

(a)

Decay into the nanofiber mode

Density of modes in 1D

$$
\gamma_{1 D} \approx \frac{2 \pi}{\hbar} \widehat{\lambda}(k)\left\langle H_{\text {int }}\right\rangle^{2}
$$

Decay into the nanofiber mode

Density of modes
 $$
\gamma_{1 D} \approx \frac{2 \pi}{\hbar} \oint(k)\left\langle H_{i n t}\right\rangle^{2}
$$

Proportional to the electric field of the guided mode.

$$
|E|^{2}=\mathcal{E}^{2}\left[K_{0}^{2}(q r)+w K_{1}^{2}(q r)+f K_{2}^{2}(q r)\right]
$$

Evanescent Coupling

Not to scale

Evanescent Coupling

Evanescent Coupling

Coupling Enhancement

$$
\alpha=\frac{\gamma_{1 D}}{\gamma_{0}}
$$

Coupling Enhancement

Coupling Efficiency

Coupling Efficiency

Purcell Factor

Purcell Factor

$$
F_{P}=\frac{\gamma_{t o t}}{\gamma_{0}}=\frac{\alpha}{\beta}
$$

Cooperativity

γ_{0}

$$
C_{1}=\frac{\beta}{(1-\beta)}=\frac{\gamma_{1 D}}{\gamma_{r a d}}
$$

Cooperativity

Cooperativity

Cooperativity

$\xi^{\pi} \gamma_{0}$

$$
C_{1}=\frac{\sigma_{0}}{\text { Area }_{\mathrm{mode}}} \frac{1}{T}
$$

Cooperativity

Cooperativity

$$
C_{1}=\frac{g^{2}}{\kappa \gamma_{\text {rad }}}=\left(\frac{\sigma_{0}}{A_{\text {mode }}}\right)\left(\frac{c}{v_{g}}\right)=\frac{\gamma_{1 D}}{\gamma_{\text {rad }}}
$$

Cooperativity

$$
C_{1}=\frac{\sigma_{0}}{\text { Area }_{\text {mode }}} n_{e f f}=\frac{\gamma_{1 D}}{\gamma_{\text {rad }}}
$$

What happens on a photonic structure?
(a)

(b)

Uniform waveguide

Photonic crystal waveguide

PhD Thesis Jonathan Hood

The alligator photonic crystal waveguide (Cal Tech)

PhD Thesis Jonathan Hood

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Mode area: $\quad A_{k}=\frac{\int_{\text {area }} \mathrm{d}^{2} \mathbf{r} \epsilon(\mathbf{r})\left|\mathbf{E}_{k}(\mathbf{r})\right|^{2}}{\max \left[\epsilon(\mathbf{r})\left|\mathbf{E}_{k}(\mathbf{r})\right|^{2}\right]}$.

Scanning electron microscope

Cross section of the intensity

PhD Thesis Jonathan Hood

Because there is a bandgap, the cooperativity grows with it. It can also create a "cavity mode" that does not move attached to the atom

Figure 1.12: Atoms coupled to the bandgap of a photonic crystal waveguide. The atoms and photon cloud form atom-photon bound states.

PhD Thesis Jonathan Hood

Limit of coupling atom and electromagnetic field, the case of circuit QED

Wiring up quantum systems

R. J. Schoelkopf and S. M. Girvin

The emerging field of circuit quantum electrodynamics could pave the way for the design of practical quantum computers.

The dipole d with characteristic length L is in a coaxial cavity of lengh $\lambda / 2$ and radius r

The coaxial mode volume is much more confined than λ^{3}

$$
\begin{aligned}
& g=\frac{d E_{v}}{\hbar} ; \quad d=e L \\
& V_{e f f}=\pi r^{2} \lambda / 2 ; \quad \frac{\varepsilon_{0}}{2} E_{v}^{2}= \\
& E_{v}=\frac{1}{r} \sqrt{\frac{\hbar \omega^{2}}{2 \pi^{2} \varepsilon_{0} c}} \\
& \frac{g}{\omega}=\left(\frac{L}{r}\right) \sqrt{\frac{e^{2}}{2 \pi^{2} \varepsilon_{0} \hbar c}}=\left(\frac{L}{r}\right) \sqrt{\frac{2 \alpha}{\pi}}
\end{aligned}
$$

Now the coupling constant can be a percentage of the frequency

$$
\frac{g}{\omega}=\left(\frac{L}{r}\right) \sqrt{\frac{2 \alpha}{\pi}}=0.068\left(\frac{L}{r}\right)
$$

This is not Jaynes Cummings model

You can continue the calculation, assume for wQED that $T=1$ and $L \sim r$, to find $\gamma_{1 d}$

$$
\gamma_{1 d} \sim 0.03 \omega
$$

quite different than free space, $\mathrm{L} \ll \lambda$

$$
\gamma_{0}=\frac{\omega^{3} d^{2}}{\pi \varepsilon_{0} \hbar c^{3}} \sim 2 \omega \alpha\left(\frac{L}{\lambda / 2 \pi}\right)^{2}
$$

Thanks

